Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(5): 746-758.e5, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36805026

RESUMO

Type I CRISPR-Cas systems employ multi-subunit Cascade effector complexes to target foreign nucleic acids for destruction. Here, we present structures of D. vulgaris type I-C Cascade at various stages of double-stranded (ds)DNA target capture, revealing mechanisms that underpin PAM recognition and Cascade allosteric activation. We uncover an interesting mechanism of non-target strand (NTS) DNA stabilization via stacking interactions with the "belly" subunits, securing the NTS in place. This "molecular seatbelt" mechanism facilitates efficient R-loop formation and prevents dsDNA reannealing. Additionally, we provide structural insights into how two anti-CRISPR (Acr) proteins utilize distinct strategies to achieve a shared mechanism of type I-C Cascade inhibition by blocking PAM scanning. These observations form a structural basis for directional R-loop formation and reveal how different Acr proteins have converged upon common molecular mechanisms to efficiently shut down CRISPR immunity.


Assuntos
Proteínas Associadas a CRISPR , Estruturas R-Loop , Conformação Proteica , Modelos Moleculares , DNA/genética , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/genética
2.
Curr Opin Biotechnol ; 78: 102839, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371895

RESUMO

Clustered regularly interspaced short palindromic repeats - CRISPR-associated protein (CRISPR-Cas) systems are a critical component of the bacterial adaptive immune response. Since the discovery that they can be reengineered as programmable RNA-guided nucleases, there has been significant interest in using these systems to perform diverse and precise genetic manipulations. Here, we outline recent advances in the mechanistic understanding of CRISPR-Cas9, how these findings have been leveraged in the rational redesign of Cas9 variants with altered activities, and how these novel tools can be exploited for biotechnology and therapeutics. We also discuss the potential of the ubiquitous, yet often-overlooked, multisubunit CRISPR effector complexes for large-scale genomic deletions. Furthermore, we highlight how future structural studies will bolster these technologies.


Assuntos
Bactérias , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Bactérias/genética , Biotecnologia , Genoma , Edição de Genes
4.
Nature ; 603(7900): 343-347, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236982

RESUMO

CRISPR-Cas9 as a programmable genome editing tool is hindered by off-target DNA cleavage1-4, and the underlying mechanisms by which Cas9 recognizes mismatches are poorly understood5-7. Although Cas9 variants with greater discrimination against mismatches have been designed8-10, these suffer from substantially reduced rates of on-target DNA cleavage5,11. Here we used kinetics-guided cryo-electron microscopy to determine the structure of Cas9 at different stages of mismatch cleavage. We observed a distinct, linear conformation of the guide RNA-DNA duplex formed in the presence of mismatches, which prevents Cas9 activation. Although the canonical kinked guide RNA-DNA duplex conformation facilitates DNA cleavage, we observe that substrates that contain mismatches distal to the protospacer adjacent motif are stabilized by reorganization of a loop in the RuvC domain. Mutagenesis of mismatch-stabilizing residues reduces off-target DNA cleavage but maintains rapid on-target DNA cleavage. By targeting regions that are exclusively involved in mismatch tolerance, we provide a proof of concept for the design of next-generation high-fidelity Cas9 variants.


Assuntos
Sistemas CRISPR-Cas , Reparo de Erro de Pareamento de DNA , Edição de Genes , RNA Guia de Cinetoplastídeos , Proteína 9 Associada à CRISPR/genética , Microscopia Crioeletrônica , DNA/química , DNA/genética , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...